Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.744
Filtrar
1.
Stem Cell Res Ther ; 14(1): 189, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507794

RESUMO

BACKGROUND: Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.


Assuntos
Transplante de Tecido Encefálico , Células-Tronco Embrionárias Humanas , Doença de Huntington , Ratos , Animais , Humanos , Doença de Huntington/terapia , Corpo Estriado/fisiologia , Neurônios , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 119(29): e2110746119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858361

RESUMO

Intraneuronal inclusions of misfolded α-synuclein (α-syn) and prion-like spread of the pathologic α-syn contribute to progressive neuronal death in Parkinson's disease (PD). Despite the pathologic significance, no efficient therapeutic intervention targeting α-synucleinopathy has been developed. In this study, we provide evidence that astrocytes, especially those cultured from the ventral midbrain (VM), show therapeutic potential to alleviate α-syn pathology in multiple in vitro and in vivo α-synucleinopathic models. Regulation of neuronal α-syn proteostasis underlies the therapeutic function of astrocytes. Specifically, VM-derived astrocytes inhibited neuronal α-syn aggregation and transmission in a paracrine manner by correcting not only intraneuronal oxidative and mitochondrial stresses but also extracellular inflammatory environments, in which α-syn proteins are prone to pathologic misfolding. The astrocyte-derived paracrine factors also promoted disassembly of extracellular α-syn aggregates. In addition to the aggregated form of α-syn, VM astrocytes reduced total α-syn protein loads both by actively scavenging extracellular α-syn fibrils and by a paracrine stimulation of neuronal autophagic clearance of α-syn. Transplantation of VM astrocytes into the midbrain of PD model mice alleviated α-syn pathology and protected the midbrain dopamine neurons from neurodegeneration. We further showed that cografting of VM astrocytes could be exploited in stem cell-based therapy for PD, in which host-to-graft transmission of α-syn pathology remains a critical concern for long-term cell therapeutic effects.


Assuntos
Astrócitos , Transplante de Tecido Encefálico , Doença de Parkinson , Proteostase , alfa-Sinucleína , Animais , Astrócitos/transplante , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/patologia , Mesencéfalo/cirurgia , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo
4.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406755

RESUMO

Intrastriatal embryonic ventral mesencephalon grafts have been shown to integrate, survive, and reinnervate the host striatum in clinical settings and in animal models of Parkinson's disease. However, this ectopic location does not restore the physiological loops of the nigrostriatal pathway and promotes only moderate behavioral benefits. Here, we performed a direct comparison of the potential benefits of intranigral versus intrastriatal grafts in animal models of Parkinson's disease. We report that intranigral grafts promoted better survival of dopaminergic neurons and that only intranigral grafts induced recovery of fine motor skills and normalized cortico-striatal responses. The increase in the number of toxic activated glial cells in host tissue surrounding the intrastriatal graft, as well as within the graft, may be one of the causes of the increased cell death observed in the intrastriatal graft. Homotopic localization of the graft and the subsequent physiological cell rewiring of the basal ganglia may be a key factor in successful and beneficial cell transplantation procedures.


Assuntos
Transplante de Tecido Encefálico , Doença de Parkinson , Animais , Transplante de Tecido Encefálico/métodos , Transplante de Células , Transplante de Tecido Fetal/métodos , Mesencéfalo , Oxidopamina , Doença de Parkinson/terapia , Substância Negra
5.
Stem Cell Res Ther ; 12(1): 376, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215315

RESUMO

BACKGROUND: There is a huge controversy about whether xenograft or allograft in the "immune-privileged" brain needs immunosuppression. In animal studies, the prevailing sophisticated use of immunosuppression or immunodeficient animal is detrimental for the recipients, which results in a short lifespan of animals, confounds functional behavioral readout of the graft benefits, and discourages long-term follow-up. METHODS: Neuron-restricted neural progenitor cells (NPCs) were derived from human embryonic stem cells (ESCs, including H1, its gene-modified cell lines for better visualization, and HN4), propagated for different passages, and then transplanted into the brain of immunocompetent rats without immunosuppressants. The graft survivals, their cell fates, and HLA expression levels were examined over time (up to 4 months after transplantation). We compared the survival capability of NPCs from different passages and in different transplantation sites (intra-parenchyma vs. para- and intra-cerebroventricle). The host responses to the grafts were also investigated. RESULTS: Our results show that human ESC-derived neuron-restricted NPCs survive extendedly in adult rat brain parenchyma with no need of immunosuppression whereas a late-onset graft rejection seems inevitable. Both donor HLA antigens and host MHC-II expression level remain relatively low with little change over time and cannot predict the late-onset rejection. The intra-/para-cerebroventricular human grafts are more vulnerable to the immune attack than the intrastriatal counterparts. Prevention of graft hyperplasia by using hypoproliferative late passaged human NPCs further significantly extends the graft survival time. Our new data also shows that a subpopulation of host microglia upregulate MHC-II expression in response to the human graft, but fail to present the human antigen to the host immune system, suggestive of the immune-isolation role of the blood-brain barrier (BBB). CONCLUSIONS: The present study confirms the "immune privilege" of the brain parenchyma and, more importantly, unveils that choosing hypoproliferative NPCs for transplantation can benefit graft outcome in terms of both lower tumor-genic risk and the prolonged survival time without immunosuppression.


Assuntos
Transplante de Tecido Encefálico , Células-Tronco Neurais , Animais , Encéfalo , Rejeição de Enxerto , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Ratos , Ratos Sprague-Dawley
7.
Acta Neurochir (Wien) ; 163(5): 1451-1455, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586018

RESUMO

We retrospectively studied the T2 star (T2*)-weighted magnetic resonance imaging (MRI) of a 40-year-old patient diagnosed with symptomatic early-onset cerebral amyloid angiopathy (CAA), occurring 34 years following childhood neurosurgery using a cadaveric dural patch. Our findings revealed that CAA associated with cadaveric dural transplantation could progress rapidly, sometimes with bilateral bleeding. This microbleed evolution is suggestive of water-soluble amyloid-ß transmission via cerebrospinal fluid alongside perivascular drainage pathways with deposition in the cerebral artery walls due to clearance disturbances. Multiple intracerebral hemorrhages associated with CAA with a childhood cadaveric dural graft should be considered a life-threatening medical complication.


Assuntos
Transplante de Tecido Encefálico/efeitos adversos , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Dura-Máter/cirurgia , Imageamento por Ressonância Magnética , Complicações Pós-Operatórias/diagnóstico por imagem , Adulto , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Cadáver , Angiopatia Amiloide Cerebral/etiologia , Humanos , Masculino , Complicações Pós-Operatórias/etiologia
8.
Cell Transplant ; 30: 963689720978219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33435710

RESUMO

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins ßIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


Assuntos
Transplante de Tecido Encefálico/métodos , Queratinócitos/metabolismo , Animais , Humanos , Ratos
9.
Mol Neurobiol ; 58(6): 2481-2493, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33443682

RESUMO

Spinal cord injury (SCI) is a disabling neurological disorder that causes neural circuit dysfunction. Although various therapies have been applied to improve the neurological outcomes of SCI, little clinical progress has been achieved. Stem cell-based therapy aimed at restoring the lost cells and supporting micromilieu at the site of the injury has become a conceptually attractive option for tissue repair following SCI. Adult human neural stem/progenitor cells (hNS/PCs) were obtained from the epileptic human brain specimens. Induction of SCI was followed by the application of lentiviral vector-mediated green fluorescent protein-labeled hNS/PCs seeded in PuraMatrix peptide hydrogel (PM). The co-application of hNS/PCs and PM at the SCI injury site significantly enhanced cell survival and differentiation, reduced the lesion volume, and improved neurological functions compared to the control groups. Besides, the transplanted hNS/PCs seeded in PM revealed significantly higher migration abilities into the lesion site and the healthy host tissue as well as a greater differentiation into astrocytes and neurons in the vicinity of the lesion as well as in the host tissue. Our data suggest that the transplantation of hNS/PCs seeded in PM could be a promising approach to restore the damaged tissues and improve neurological functions after SCI.


Assuntos
Transplante de Tecido Encefálico , Epilepsia/patologia , Vetores Genéticos/metabolismo , Lentivirus/metabolismo , Células-Tronco Neurais/metabolismo , Peptídeos/química , Traumatismos da Medula Espinal/patologia , Transdução Genética , Animais , Encéfalo/patologia , Sobrevivência Celular , Proteínas do Domínio Duplacortina , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos Wistar , Recuperação de Função Fisiológica , Tecidos Suporte/química
10.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752261

RESUMO

Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other's axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.


Assuntos
Tronco Encefálico/transplante , Transplante de Tecido Encefálico/métodos , Regeneração Nervosa/fisiologia , Paraplegia/cirurgia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/cirurgia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Tronco Encefálico/embriologia , Clonidina/farmacologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Locomoção/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Paraplegia/fisiopatologia , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Ioimbina/farmacologia
11.
CNS Neurosci Ther ; 26(7): 682-697, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32087606

RESUMO

BACKGROUND AND PURPOSE: Cerebral organoids (COs) have been used for studying brain development, neural disorders, and species-specific drug pharmacology and toxicology, but the potential of COs transplantation therapy for brain injury remains to be answered. METHODS: With preparation of traumatic brain injury (TBI) model of motor dysfunction, COs at 55 and 85 days (55 and 85 d-CO) were transplanted into damaged motor cortex separately to identify better transplantation donor for brain injury. Further, the feasibility, effectiveness, and underlying mechanism of COs transplantation therapy for brain injury were explored. RESULTS: 55 d-CO was demonstrated as better transplantation donor than 85 d-CO, evidenced by more neurogenesis and higher cell survival rate without aggravating apoptosis and inflammation after transplantation into damaged motor cortex. Cells from transplanted COs had the potential of multilinage differentiation to mimic in-vivo brain cortical development, support region-specific reconstruction of damaged motor cortex, form neurotransmitter-related neurons, and migrate into different brain regions along corpus callosum. Moreover, COs transplantation upregulated hippocampal neural connection proteins and neurotrophic factors. Notably, COs transplantation improved neurological motor function and reduced brain damage. CONCLUSIONS: This study revealed 55 d-CO as better transplantation donor and demonstrated the feasibility and efficacy of COs transplantation in TBI, hoping to provide first-hand preclinical evidence of COs transplantation for brain injury.


Assuntos
Lesões Encefálicas/terapia , Transplante de Tecido Encefálico/métodos , Células-Tronco Embrionárias/transplante , Transtornos das Habilidades Motoras/terapia , Organoides/transplante , Animais , Lesões Encefálicas/fisiopatologia , Movimento Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Humanos , Masculino , Destreza Motora/fisiologia , Transtornos das Habilidades Motoras/fisiopatologia , Neurogênese/fisiologia , Organoides/fisiologia , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 40(11): 2215-2227, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988060

RESUMO

Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.


Assuntos
Transtorno Autístico/cirurgia , Transplante de Tecido Encefálico , Transplante de Tecido Fetal , Neurônios GABAérgicos/fisiologia , Interneurônios/transplante , Inibição Neural/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Comportamento Social , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Comportamento Exploratório , Feminino , Masculino , Aprendizagem em Labirinto , Eminência Mediana/citologia , Eminência Mediana/embriologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Sinapses/fisiologia
13.
Cell Stem Cell ; 25(4): 462-472, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585092

RESUMO

Recent demonstrations of human brain organoid transplantation in rodents have accentuated ethical concerns associated with these entities, especially as they relate to potential "humanization" of host animals. Consideration of established scientific principles can help define the realistic range of expected outcomes in such transplantation studies. This practical approach suggests that augmentation of discrete brain functions in transplant hosts is a more relevant ethical question in the near term than the possibility of "conscious" chimeric animals. We hope that this framework contributes to a balanced approach for proceeding with studies involving brain organoid transplantation and other forms of human-animal brain chimeras.


Assuntos
Transplante de Tecido Encefálico/ética , Encéfalo/fisiologia , Quimera/fisiologia , Estado de Consciência/fisiologia , Organoides/transplante , Animais , Modelos Animais de Doenças , Ética em Pesquisa , Humanos , Camundongos , Organoides/fisiologia , Guias de Prática Clínica como Assunto , Ratos , Transplante Heterólogo
14.
Cerebellum ; 18(5): 855-865, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418135

RESUMO

Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.


Assuntos
Transplante de Tecido Encefálico/métodos , Doenças Cerebelares/terapia , Cerebelo/transplante , Modelos Animais de Doenças , Transplante de Tecido Fetal/métodos , Doenças Neurodegenerativas/terapia , Animais , Doenças Cerebelares/patologia , Cerebelo/fisiologia , Feminino , Sobrevivência de Enxerto/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Mutantes Neurológicos , Doenças Neurodegenerativas/patologia
15.
Exp Neurol ; 318: 135-144, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028828

RESUMO

Inhibitors of cell cycle proteins are known to reduce glial activation and to be neuroprotective in a number of settings. In the context of intracerebral grafting, glial activation is documented to correlate with graft rejection. However, the effects of modification of glial reactivity following grafting in the CNS are poorly understood. Moreover, it is not completely clear if the glial cells themselves trigger the rejection process, or are they secondarily activated. The present study investigated the effect of microglial inhibition by the cyclin-dependant kinase 5 (CDK5) inhibitor roscovitine following intracerebral transplantation in the rodent model of Parkinson's disease. Single cell suspension of rat E14 ventral mesencephalic tissue was transplanted to the dopamine-depleted striatum of unilaterally 6-hydroxydopamine (6-OHDA) lesioned male Sprague-Dawley rats. Experimental animals received injections of roscovitine (20 mg/kg) or a vehicle solution three times following the procedure. Immunohistochemistry was carried out on Day 7 and Day 28 to quantitatively describe the glial reaction adjacent to grafts. The data confirm that systemic roscovitine treatment significantly reduced microglial recruitment adjacent to the grafts on Day 28, without exhibiting significant effects on astroglia. However, this was not found to correlate with elevated numbers of neurons in the grafts. Moreover, microglial reaction surrounding grafts was less pronounced compared to control animals, subjected to the mechanical influence only, even without roscovitine treatment. Our results are the first to show the effect of cell cycle inhibition in the context of neuronal transplantation. The findings suggest that microglial activation around intracerebral grafts can be modified pharmacologically. However, the results do not confirm direct neuroprotective effects of cell cycle inhibition after intracerebral transplantation. Reducing microglial recruitment around grafts could be beneficial by reducing inflammation-related degenerative processes. Sparing astrocytes in the same time provides transplanted cells with essential trophics and support. We consider microglial inhibition to be a possible approach for reducing later graft-related complications.


Assuntos
Astrócitos/efeitos dos fármacos , Transplante de Tecido Encefálico/métodos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Roscovitina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Masculino , Transtornos Parkinsonianos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley
16.
Biomaterials ; 192: 510-522, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529870

RESUMO

Stroke, traumatic brain injuries, and other similar conditions often lead to significant loss of functional brain tissue and associated disruption of neuronal signaling. A common strategy for replacing lost neurons is the injection of dissociated neural stem cells or differentiated neurons. However, this method is unlikely to be suitable for replacing large brain cavities, and the resulting distribution of neurons may lack the necessary architecture to support appropriate brain function. Engineered neural tissues may be a viable alternative. Cell death is a prominent concern in neuronal grafting studies, a problem that could be magnified with the transplantation of engineered neural tissues. Here, we examined the effect of one contributor to cell death, acute cerebral inflammation, on neuronal survival after the transplantation of bioengineered constructs based on silk scaffolds. We found evidence of a high degree of inflammation and poor neuronal survival after introducing engineered constructs into the motor cortex of rats. Integrating a corticosteroid (methylprednisolone) into the constructs resulted in significantly improved neuron survival during the acute phase of inflammation. The improved construct survival was associated with decreased markers of inflammation and an anti-inflammatory state of the immune system due to the steroid treatment.


Assuntos
Transplante de Tecido Encefálico/métodos , Inflamação/prevenção & controle , Seda/química , Tecidos Suporte/química , Animais , Bombyx , Encéfalo/citologia , Transplante de Tecido Encefálico/efeitos adversos , Sobrevivência Celular , Células Cultivadas , Inflamação/etiologia , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Seda/uso terapêutico , Engenharia Tecidual
17.
Ann Neurol ; 84(6): 950-956, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30286516

RESUMO

For patients with incurable neurodegenerative disorders such as Huntington's (HD) and Parkinson's disease, cell transplantation has been explored as a potential treatment option. Here, we present the first clinicopathological study of a patient with HD in receipt of cell-suspension striatal allografts who took part in the NEST-UK multicenter clinical transplantation trial. Using various immunohistochemical techniques, we found a discrepancy in the survival of grafted projection neurons with respect to grafted interneurons as well as major ongoing inflammatory and immune responses to the grafted tissue with evidence of mutant huntingtin aggregates within the transplant area. Our results indicate that grafts can survive more than a decade post-transplantation, but show compromised survival with inflammation and mutant protein being observed within the transplant site. Ann Neurol 2018;84:950-956.


Assuntos
Aloenxertos/patologia , Doença de Huntington/cirurgia , Acetilcolinesterase/metabolismo , Adulto , Antígenos CD/metabolismo , Encéfalo/patologia , Transplante de Tecido Encefálico/métodos , Calbindina 2/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo
18.
Neuropharmacology ; 141: 148-157, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30172846

RESUMO

GABAA and GABAC receptors are both GABA-gated chloride channels with distinct pharmacological properties, mainly in their sensitivity to bicuculline and gabazine. In this study, we found that suramin, a purinergic receptor antagonist, is a novel competitive antagonist selective to GABAA over GABAC receptors. Specifically, suramin antagonized the GABA-induced current and the spontaneous opening current of the wild type α1ß2γ2 GABAA receptor with high-level expression in Xenopus oocytes. The antagonism was concentration dependent with an IC50 that varied depending on the concentration of GABA, and with the lowest IC50 of 0.43 µM when antagonizing the spontaneous current. Thus, its potency is slightly higher than bicuculline on the same GABAA receptor. Suramin also antagonized the mouse native brain GABA receptors micro-transplanted into the Xenopus oocytes with its potency depending on the GABA concentration. In addition, in the presence of two fixed concentrations of suramin, the GABA concentration response of the receptor was shifted to the right without reduction of the maximum current. Thus, our results are consistent with that suramin is a competitive antagonist for the α1ß2γ2 GABAA receptor. Interestingly, the rank order of maximum allosteric inhibition (efficacy) of spontaneous current of the GABAA receptor by three competitive antagonists was suramin > bicuculline > gabazine, similar to the rank order of their molecular weight. In contrast, similar to bicuculline, suramin has much lower potency in antagonizing the GABA-induced current of the ρ1 GABAC receptor. In conclusion, we have identified a novel GABAA receptor competitive antagonist, which is selective to the α1ß2γ2 over ρ1 GABA receptors.


Assuntos
Ligação Competitiva/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Suramina/farmacologia , Regulação Alostérica , Animais , Bicuculina/farmacologia , Transplante de Tecido Encefálico , Relação Dose-Resposta a Droga , Camundongos , Oócitos , Técnicas de Patch-Clamp , Isoformas de Proteínas/antagonistas & inibidores , Piridazinas/farmacologia , Especificidade por Substrato , Xenopus , Ácido gama-Aminobutírico/farmacologia
19.
Results Probl Cell Differ ; 66: 307-329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30209666

RESUMO

Clinical trials for Parkinson's disease, which used primary brain fetal tissue, have demonstrated that neural stem cell therapy could be suitable for neurodegenerative diseases. The use of fetal tissue presents several issues that have hampered the clinical development of this approach. In addition to the ethical concerns related to the required continuous supply of fetal specimen, the necessity to use cells from multiple fetuses in a single graft greatly compounded the problem. Cell viability and composition vary in different donors, and, further, the heterogeneity in the donor cells increased the probability of immunological rejection or contamination. An ideal cell source for cell therapy is one that is renewable, thus eliminating the need for transplantation of primary fetal tissue, and that also allows for viability, sterility, cell composition, and cell maturation to be controlled, while being inherently not tumorigenic. The availability of continuous and standardized clinical grade normal human neural cells, able to combine the plasticity of fetal tissue with an extensive proliferating capacity and functional stability, would be of paramount importance for the translation of cell therapy for central nervous system (CNS) disorders into the clinic. Here we describe a well-established protocol to produce human neural stem cells following GMP guidelines that allows us to obtain "clinical grade" cell lines.


Assuntos
Transplante de Tecido Fetal , Feto/citologia , Células-Tronco Neurais/citologia , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco , Transplante de Tecido Encefálico , Linhagem Celular , Humanos , Doenças Neurodegenerativas/patologia
20.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959237

RESUMO

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Assuntos
Bainha de Mielina/fisiologia , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Receptor Muscarínico M3/fisiologia , Remielinização/fisiologia , Animais , Transplante de Tecido Encefálico , Sinalização do Cálcio , Células Cultivadas , Transplante de Tecido Fetal , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Prosencéfalo/embriologia , Prosencéfalo/transplante , Interferência de RNA , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Medula Espinal/química , Medula Espinal/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...